Skip to main content

Panasonic S1R, not the droid you are looking for.

The Panasonic S1 sensor is awesome, I suspect in part as it uses the same Sony sensor the A7III uses. There is not a lot difference between the tested results for these cameras.

The S1R is, well, different. The first sign there is no shared sensor with any Sony camera is the MP count. Sitting at 47.3 it is quite unique in the 40MP+ space.

So how does it compare in the 40MP plus space? Well I’m not going to lie, It’s not as good as the competition. Canon still performs the worst, and assuming the S1R is not doing any in camera NR it is better than the GFX-50S at 1 second, however at 30 seconds the GFX is better.

At 5 minutes (300 seconds) the noise reduction kicks in which is clearly visible. It looks very similar to the Fuji and Olympus cameras and their NR algorithm. The noise mean drops below the 1 second results at 5 minutes and the noise colour profile changes significantly.

There is no point me comparing it to all the other models in the 40MP+ space as all are better for low light / long exposure work based on my basic test, at least from a noise perspective. In fact older models such as the A7RII seem to perform better. However, how the camera performs in regards to dynamic range I can not say.

What I will say is this camera is a classic example of why I do these tests. Dx0 has this camera equal or above most models for overall image quality. While this may be true for standard exposure times under relatively normal lighting, it is not true for extremely low light and long exposures. For Astro Photography or any other long exposure work the field is nowhere near as close.

So for long exposure work, this is probably not the droid you are looking for.

Sony A7 III sensor testing.

There has been a lot chatter about the A7 mark 3. Both the previous models were excellent low light performers, although there was some discussion in the Astro community they were eating stars. With the introduction of a BSI sensor could this be the camera for you?

Having recently tested the Panasonic S1 I was very interested to see how the A7 III performs, as most people are saying it’s currently a 2 horse race between these two cameras.

Well I happy to say the A7 performs very well, It’s clear that the BSI sensor is much more uniform than previous models and it has significantly less noise.

When comparing it to it’s competition it stacks up very well. It performs very close to the S1, and surprisingly at 5 minutes there is almost nothing in it. The EOS R is the worst of the pack and the A7III is significantly better right across the exposures tested.

I am not sure if the Z6 and the A7III share the same sensor. Getting 100% confirmation on this is very hard, some articles are saying they are the same, while in others the number of raw pixels is slightly different, so maybe they are not. If they are then the 5 minute exposure time could show aggressive NR from Sony. However there have reports that the A7III is not suffering from the star eating problem that previous models had, well not completely it depends on what you read, but it’s better. So you can draw your own conclusions about the Z6 and the A7III sharing the same sensor.

It would be more consistent to conclude the S1 and A7III share the same sensor than the Z6. With many saying this is the case less with only the phase detection pixels removed in the S1. The difference in noise could easily come down to RAW images algorithms, and sensor production variation. It will be interesting to see how the A7RIII and S1R compare.

In my opinion if you currently own Sony gear the upgrade path is a no brainer, the A7III. if you don’t other factors such as cost, lens availability and other camera features are more likely to be a factor if you are leaning to the S1.

It’s also worth noting that ensuring testing temperature is very difficult and this or a future firmware upgrade could easily tip the scales to either the A7III or the S1 or even the Z6. What can be done with a firmware upgrade is amazing. Either way both the A7III and the S1 are excellent long exposure performers and should perform very well.

If you would like to find out more about the Sensor DBclick here.


Sensor DB Upgrade.

It has been a while since the Sensor Database has been upgraded, and it was time with the recent additions of some never sensors.

New features include a better layout with less clutter for comparing models. I have also added pop-up images to allow users to see a true 1:1 view of the sensor noise, rather than a 50% browser rescale. These new features will allow for better comparisons as sensors continue to improve.

To view the new Sensor DB, click here

Panasonic Lumix S1, #TogUpgrade?

A friend of mine recently purchased an S1, so it was time to test. I must say I’m pretty impressed. The low light sensitivity is generally one par with the Nikon Z6 for what most would consider “Sport” low light photography. Even Dx0 only shows a 4 point (0.011%) improvement on the Z6. Depending on the body you get it could easily fall either way.

So whats so impressive about this camera I hear you say? well, when you start to push this camera to exposures in excess of 1 second at ISO 3200 something very interesting starts to happen. The S1 does not seem to deteriorate any where near as quickly as the competition. At 300 seconds the noise is only slightly worse than the Z6 is at 30 seconds.

The S1 at 300 seconds performs better than the Canon RP at 1 second. Ouch, thats got to hurt Canon. Panasonic have clearly overshot the moon with their new Venus Engine processor and sensor.

S1 v the competition.

The noise profile looks to be “normal”, and I does not look like there is any aggressive NR filtering being performed before additional “in menu” options are enabled, unlike some some cameras like Fuji and Olympus. It would be great to see some real world shots, preferably of stars etc. Even the Sony A7 series is know to eat a few stars.

If you are after possibly the best low light camera at around 24MP this could possibly be it. I’d personally wait to see some astro pictures from this camera, and see what the astrophotographers say. If it’s not eating stars or not very aggressively Panasonic have a real winner here, at least from a long exposure point of view.

I’m very keen to get my hands on a S1R now, as this could be a real cat amongst the pidgins in the 45MP+ range.

If you would like to compare the S1 to more models, or learn more about the sensor database click here.

Canon Consistent with EOS-R & RP

Canon have improved the sensors in the EOS R and RP. The R sensor is based on the same sensor we see in the 5D mark 4, and the RP is based on the same sensor in the 6Dm2 and Canon have managed to squeeze a little more out of both for some good results.

EOS-RP v’s 6D mark II

As you can see the EOS-RP sensor performs much better than the 6Dm2 sensor over the whole range of long exposure times. Canon have possibly continued to improve the manufacturing process or the new DIGIC processing is really working some extra magic. The RP is where I expected the 6Dm2 sensor to be after the fantastic long exposure performance of the original mark I. Better late then never.

EOS-R v’s 5D Mark IV

The EOS-R is also better than the 5D mark IV. It’s not the same jump in sensor improvement as the RP, but it’s still a big improvement of almost 20% less noise at 1 second. Again there is consistent gains over the long exposure testing range.

So it’s a good gain for Canon, but I do feel disappointed again, just like I did when testing the 6D mark II. Canon are making consistent gains with each new model, but the long exposure sensor noise is where the competition was years ago.

Mirrorless, Nikon and Canon

When comparing the R and RP to the Z6 and Z7 based on long exposure base noise alone It would be difficult to recommend Canon, especially if you are not gear biased. The R/RP may do better for extreme long exposures of 5 mins or more, but how these models would compare with dark frames added to remove noise for extreme long exposure I don’t know.

Conclusion:
If you are currently using Canon then the R and RP are a good step up from the 5D mark 4 and 6D mark 2 in regards to sensor noise. If your thinking of upgrading to mirrorless I think both these would perform well and give good results. It’s possibly the most sensible path to go down if you have a lot of EF glass and just want to expand your kit.

The EOS-R has the best long exposure low noise sensor from Canon over 20MP, so if you are after Canon, this is the one to buy. The EOS-RP is also very respectable and not far behind. Will they be the cleanest images money can buy for long exposure?, No I expect not.

If you would like to compare the EOS-R and EOS-RP to more models, or learn more about the sensor database click here.

Again, a big thanks for Alex @Stallards in Hobart for access to these cameras for testing.

Fuji X-T3. Third time lucky?

I’m always in two minds when it comes to the fuji sensors. and like Olympus they seem to be doing noise reduction and low level sensor data manipulation even when it’s disabled in camera. It could be the “grain effects” that make Fuji unique, but it does make it hard to compare their sensors to other bodies.

Having said that the new X-T3 performs much better than the X-T2, even with a few more MP. At 1 and 30 seconds the sensor is much better than it’s predecessor. Noise does build up quicker with longer exposures and at five minutes the results are worse (noise mean), but with less standard deviation.

X-T2 vs X-T3

Compared it to the Nikon Z6, currently the leader for long exposure noise the X-T3 appears to do very well. However as mentioned above this in my mind only shows one thing, that Fuji are seriously processing the RAW data. Keep in mind that the X-T3 is a crop body, where as the Z6 is not.

Thats some serious low noise?

When compared to a crop body like the Nikon D7500 you start to get an idea of what is going on:

Nikon D7500 vs X-T3, whats the story here?

Conclusion:
There is no doubt that the X-T3 is a big improvement on the previous model, the noise has been greatly reduced. However I am really not sure how this camera will perform in a real world low light situation. Either Fuji have a crop sensor that is performing better than any full frame sensor, or they are performing noise reduction. I think the latter is more likely, and how this impacts on some subject matter like stars I guess time will tell. Some real world astrophotography samples would be great to see.

If you would like to compare the X-T3 to more models, or learn more about the sensor database click here.

Again, a big thanks for Alex @Stallards in Hobart for access to the X-T3.

Nikon Z6 & Z7 King of the Hill

Nikon’s last low light monster, the D750 has finally been knocked off the hill. The new Z6 and Z7 with their new BSI sensors have overtaken the D750 to hold positions 1 and 2 for low light performance, at least for exposure times below 30 seconds. Our testing showed at 300 seconds (5 mins) the Z6 and Z7 were significantly worse than the D750, as well as many other models. At what point the sensor introduced the noise is yet undetermined, I expect well above 30 seconds.

So for any application below or at a few minutes the Z6 is going to be better than anything currently available in the market. There is no evidence of star eating, and NR off in camera appears to be “off” unlike some other bodies that add grain or manipulate the RAW data even when set to “NR Off”.

How does the D750 compare to the new Z6 and Z7

The Z7 is still great at 1 second, but starts to fall away when compared to the D750 @ 30 seconds. Keep in mind this is a 46 v’s 24 mega pixel race. So the Z7 performs exceptionally well for its pixel count. At 30 seconds I expect you would be getting wonderfully clean images in low light.

The Z7 seems to perform slightly better at 300 seconds compared to the Z6, which was a bit of a surprise, and it was also out performing the 5DSR and GFX-50S. It was about the same as the A7RmII (I do not have the mIII sample as yet).

If you are looking for exposures in minutes, then I’d maybe consider other bodies. But keep in mind the new Z mount may see some faster glass in the future, which would allow a reduction in ISO, and possibly a more cleaner image, and it is 46MP after all.

Overall it’s a very impressive result, and continues to show that Nikon are working hard with Sony to produce sensors that give exceptional results in low light / long exposure situations.

To compare more models, or see further details, check out the Sensor Database.

A big thanks for Alex @Stallards in Hobart for access to the Z6 and Z7 for testing.

Nikon D7500 Long Exposure Monster.

I’m impressed, the Nikon D7500 is the best crop body I have tested so far for long exposure. It out performs all previous models by quite a margin, taking even the title form the D500. At 1 second it out performs the new Canon 6D Mark II which is full frame, and is is only slightly worse at 30 seconds. Check out the results and compare models here.

 

YES! Sigma 14mm f1.8, Full Frame, Yes. Really.

When I first heard that Sigma were making a 14mm f1.8 Art my initial reaction was one of resentment, why are sigma creating more crop sensor ART lenses?
What about us poor sods waiting in the full frame (FF) world?. It seemed to good to be true to be a FF lens. But there was still the hope deep down, that just maybe, Sigma has been able to do something magical and bend the laws of physics and light to pull off the first 14mm f1.8 lens. After all companies are innovating in this space all the time right?, look at Canon with their fancy 11mm lens.

Then a few weeks ago the chatter started across various tog sites, rumours so wonderful they seemed to good to be true. The new 14mm was indeed going to be FF. At this point I like many others were hanging out on the edge of their seat, waiting for an official press release. Had Sigma done the impossible? Well it appeared they had when the offical word was given from Sigma. Since then specifications have been released, as well as sample pictures.

However, the story is not over. Possibly the most important piece of information is missing. How much is it going to cost? Surely bending the laws of physics and light comes at a cost? Now we wait, stuck in a holding pattern until Sigma release offical pricing. Oh course it does not stop people of speculating, so far I’ve seen people quote the lens as cheap as $800, and as much as $3000. Oh course I know a few people who are familiar with Sigma pricing, and they believe it should be around the $1500 mark (AUD).

So my name is number one of the order list (well at least here in my local town), and you can be assured that I will be testing it as soon as humanly possible. So until then, let us all keep calm and make sure your name is on a list somewhere, or you can wait for my review 🙂

Better than sliced bread, the Nikon D700, Sensor DB Update.

When the Nikon D700 was introduced nearly 9 years ago it was the best thing since sliced bread. It was the camera to have for low light. It’s colour and tone output was nothing short of outstanding. In many respects it made it’s brother, the D3 look a bit underwhelming in regards to noise, and it wasn’t until the release of the D3s where we saw the big brother take back the trophy.

Morning Light (Nikon D700)

At the time it’s main competition was the Canon 5D mark 1, and yes it was a great camera in it’s day, but there was a lot of people jumping ship when they saw what the D700 could do. The features of the D700 9 years ago were well ahead of its time, and the rivals. Even the 5D mark 2 with it’s 21MP was not enough to put it in it’s place when it was announced later the same year.

Looking back now and viewing the sensor data I have built up over time it’s clear that the D700 was the winner when compared to any of it’s rivals at the time. But it’s also important not to get too nostalgic if your considering this camera for low light work today, especially long exposure. Sure it will work and give you pretty good results, but there are much better options.

The D700 by todays standards performs about the same as a Canon 6D at 30 seconds which is no slouch, but it is 20MP. At 300 seconds it falls somewhere around the D800 or 5Ds, 36MP and 50MP respectively.

If you would like to get nostalgic, or just to know how your D700 compares to some of the new models, it has been added to the Sensor Database.

%d bloggers like this: